

University of Pretoria Yearbook 2020

Partial differential equations of mathematical physics 776 (WTW 776)

Qualification	Postgraduate
Faculty	Faculty of Natural and Agricultural Sciences
Module credits	15.00
Programmes	BScHons Applied Mathematics
	BScHons Mathematics
	BScHons Mathematics and Mathematics Education Algebra and Analysis
	BScHons Mathematics and Mathematics Education Applied Analysis
	BScHons Mathematics and Mathematics Education Differential Equations and Modelling
	BScHons Mathematics of Finance
Prerequisites	WTW 710 or WTW 735
Contact time	2 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 2

Module content

Field-theoretic and material models of mathematical physics. The Friedrichs-Sobolev spaces. Energy methods and Hilbert spaces, weak solutions – existence and uniqueness. Separation of variables, Laplace transform, eigenvalue problems and eigenfunction expansions. The regularity theorems for elliptic forms (without proofs) and their applications. Weak solutions for the heat/diffusion and related equations.

The information published here is subject to change and may be amended after the publication of this information. The **General Regulations (G Regulations)** apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the **General Rules** section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.